lobitx.blogg.se

Video text extractor
Video text extractor








video text extractor

Methods/Statistical analysis: The proposed algorithm is divided into the pre-processing stage and the extraction processing stage to perform the text detection. Le cycle de vie de ce système comprend cinq étapes:- Construction d'un jeu de données synthétiques à partir d'images de factures réelles contenant les informations d'intérêts.- Partitionnement des données produites.- Détermination des régions prototypes à partir de la partition obtenue.- Détermination des chemins pour parcourir les régions prototypes, à partir du treillis de concepts d'un contexte formel convenablement construit.- Mise à jour du système de manière incrémentale suite à l'insertion de nouvelles donnéesīackground/Objectives: In this paper, we propose a hybrid scene-detection method using an edge and textural analysis in natural scene images, and finally, we detect the text regions by removing the non-text regions through a pattern analysis of each region.

video text extractor

Video text extractor plus#

La méthode fondée sur cette approche, que nous proposons, permet de déterminer efficacement les régions contenant une information d'intérêt à extraire.Dans une autre approche, incrémentale et plus flexible, nous proposons un système d'extraction d'informations textuelles qui consiste en un ensemble de régions prototypes et de chemins pour parcourir ces régions prototypes. Le principe de cette approche est de décomposer une image de documents en quatre sous-régions, de manière récursive, jusqu'à ce qu'une information textuelle d'intérêt soit extraite à l'aide d'un moteur de reconnaissance de caractères. Les contributions présentées dans ce mémoire s'inscrivent dans le cadre de la localisation et de l'extraction d'informations textuelles fondées sur des régions identifiées au sein d'une image de document.Tout d'abord, nous présentons une approche de décomposition d'une image de documents en sous-régions fondée sur la décomposition quadtree. En effet, elles contiennent des informations obligatoires (le numéro de facture, le numéro siret de l'émetteur, les montants, etc.) qui, selon l'émetteur, peuvent être localisées à des endroits différents. Les factures sont des documents très utilisés mais non standards. Plus précisément, nous nous intéressons à la localisation d'informations textuelles au sein d'images de factures, afin de les extraire à l'aide d'un moteur de reconnaissance de caractères. Dans ce mémoire, nous considérons en particulier des documents numérisés, également connus sous le nom d'images de documents. Pour la réalisation d'un tel système, les difficultés à surmonter sont liées à la variabilité des caractéristiques de documents, telles que le type (facture, formulaire, devis, rapport, etc.), la mise en page (police, style, agencement), la langue, la typographie et la qualité de numérisation du document. Un système de traitement de documents doit être capable de : (i) localiser une information textuelle, (ii) identifier si cette information est pertinente par rapport aux autres informations contenues dans le document, (iii) extraire cette information dans un format compréhensible par un programme informatique. La compréhension de documents fait correspondre à cette structure géométrique une structure logique en considérant des liaisons logiques (à gauche, à droite, au-dessus, en-dessous) entre les objets du document. Les différents blocs ainsi formés constituent la structure géométrique du document. Étant donnée une image de document constituée de mots, de lignes et d'objets graphiques tels que des logos, l'analyse de documents consiste à extraire et isoler les mots, les lignes et les objets, puis à les regrouper au sein de blocs. L'analyse de document et la compréhension de documents sont les deux phases du processus de traitement automatique de documents. Le traitement automatique de documents consiste en la transformation dans un format compréhensible par un système informatique de données présentes au sein de documents et compréhensibles par l'Homme.










Video text extractor